我院李波副教授在《Journal of Computational and Applied Mathematics》等期刊发表高质量论文

时间:2023-05-22浏览:435

近期,我院教师李波副教授发表多篇高质量论文。其中以第一作者身份的论文《Bifurcation analysis and complex dynamics of a Kopel triopoly model》在国际重要期刊《Journal of Computational and Applied Mathematics》第426卷(2023年)上发表。《Journal of Computational and Applied Mathematics》影响因子2.872,是我校A级期刊。该论文基于经济学原理提出三个寡头参与博弈的模型,利用复杂经济学理论探讨博弈均衡存在的条件和失稳可能引发的博弈行为变化及对策。以通讯作者身份的论文《Dynamics and bifurcations of a discrete-time Lotka-Volterra model using nonstandard finite difference discretization method》为热点论文和高被引论文。该文在国际重要期刊《Mathematical Methods in the Applied Sciences》在线发表。《Mathematical Methods in the Applied Sciences》影响因子3.007,是我校A级期刊。该论文讨论连续系统的离散化问题,利用非线性动力学方法探讨生态系统的稳定性及其可能演化的方向问题。以第一作者身份的论文《Complex dynamics of Kopel model with nonsymmetric response between oligopolists》为热点论文和高被引论文。该文在国际重要期刊《Chaos, Solitons & Fractals发表。《Chaos, Solitons & Fractals》影响因子9.922,我校校定B级期刊。该论文讨论非对称关系的双寡头模型博弈问题。三篇高质量论文的发表,有助于提升我院科学研究和学科建设水平。

Abstract:A newly disclosed nonstandard finite difference method has been used to discretize a Lotka-Volterra model to investigate the critical normal form coefficients of bifurcations for both one-parameter and two-parameter bifurcations. The discrete-time prey-predator model exhibits a variety of local bifurcations such as period-doubling, Neimark-Sacker, and strong resonances. Critical normal form coefficients are determined to reveal dynamical scenarios corresponding to each bifurcation point. We also investigate the complex dynamics of the model numerically by Matlab package using MatcotM based on numerical continuation technique. The numerical continuation validates the theoretical analysis, which is discussed from an ecological perspective.

(撰稿:岑一峰;审核:吴鑫育)


返回 原图
/